SSC CHSL - CHT1 : 180343 GRAND TEST

HINTS AND SOLUTIONS

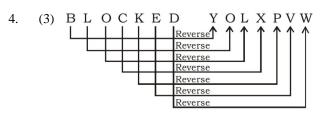
<u>ANSWER KEY</u>							
1	(2)	26	(2)	51	(4)	76	(1)
2	(3)	27	(3)	52	(3)	77	(1)
3	(1)	28	(3)	53	(1)	78	(3)
4	(3)	29	(2)	54	(2)	79	(2)
5	(3)	30	(3)	55	(2)	80	(3)
6	(3)	31	(1)	56	(4)	81	(2)
7	(1)	32	(3)	57	(3)	82	(4)
8	(1)	33	(1)	58	(3)	83	(3)
9	(2)	34	(2)	59	(3)	84	(1)
10	(3)	35	(4)	60	(3)	85	(1)
11	(2)	36	(3)	61	(1)	86	(3)
12	(2)	37	(3)	62	(2)	87	(2)
13	(3)	38	(2)	63	(4)	88	(2)
14	(1)	39	(1)	64	(4)	89	(1)
15	(4)	40	(4)	65	(1)	90	(3)
16	(3)	41	(1)	66	(3)	91	(3)
17	(3)	42	(2)	67	(4)	92	(1)
18	(2)	43	(1)	68	(2)	93	(1)
19	(4)	44	(4)	69	(4)	94	(2)
20	(3)	45	(4)	70	(1)	95	(1)
21	(1)	46	(4)	71	(1)	96	(3)
22	(1)	47	(4)	72	(3)	97	(2)
23	(2)	48	(3)	73	(4)	98	(3)
24	(3)	49	(4)	74	(2)	99	(2)
25	(2)	50	(4)	75	(3)	100	(3)

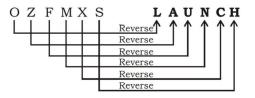
1. (2) Student follows the teacher and disciple follows the religious leader.

(3) As, A D H M

$$\downarrow \downarrow \downarrow \downarrow \uparrow opposite$$

Z W S N
Similarly, C F J O
 $\downarrow \downarrow \downarrow \downarrow opposite$
X U Q L


3. (1) The relation is $\sqrt{x} : (\sqrt{x} - 1)^3$


2.

For x = 9, result =
$$(\sqrt{9} - 1)^3 = (2)^3 = 8$$

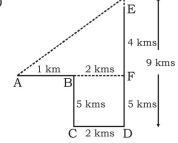
For x = 16, result =
$$(\sqrt{16} - 1)^3 = (3)^3 = 27$$
.

- 5. (3) Calendar is a list of dates whereas dictionary is a collection of words.
- 6. (3) Narmada falls in Arabian Sea where as the rest three falls in Bay of Bengal.
- 7. (1) All except Record are the brief notation used in a language.
- 8. (1) Second number = (First number)² /2, (2 4) is not following the same.

(2)
$$16 \times 4 = 64 \Rightarrow 6-4=2$$

 $9 \times 8 = 72 \Rightarrow 7-2=5$

$$27 \times 3 = 81 \Longrightarrow 8 - 1 =$$


10. (3)
$$934 - 678 = 25$$

9.

1

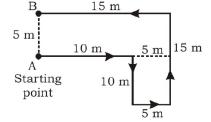
12. (2) The pattern is: +1, +(1 + 2), +(1 + 2 + 3), +(1 + 2 + 3 + 4), +(1 + 2 + 3 + 4 + 5). So, required number = 15 + 10 = 25

13. (3)

AF = 3 kms, EF = 4 kms

 $\therefore AE = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \text{ kms}$ So, he is 5 kms away from the starting point.

- 14. (1) $Z = 52 = 2 \times (26)$ $ACT = 2 \times (1 + 3 + 20)$ $= 2 \times 24 = 48$ EAT = $2 \times (5 + 1 + 20)$ $= 2 \times 26 = 52$ actual position in english alphabet actual position in english alphabet
- 15. (4) Number of people who know all three subjects = 100


Number of people who know only civics = 170

$$\therefore \text{ Required Ratio} = = \frac{100}{170} = \frac{10}{17}$$

16. (3) The correct order is-

$$2 \longrightarrow 4 \longrightarrow 1 \longrightarrow 5 \longrightarrow 3$$

population unemploy poverty disease death
-ment

- 17. (3) It is clear from the position of given die that the numbers 2, 3, 1 and 6 can't appear opposite to 4. So, it is clear that 5 appears opposite to 4. Since, in each of the die 4 appears on the top. So, 5 will be at the bottom of each die. Hence (3) is the right option.
- (2) A is the brother of F, who is the daughter of D. So, we can say that A is the son of D. P is the brother of D. So, it is clear that P is the uncle of A.
- 19. (4)
- 20. (3)
- 21. (1) In terms of height, we have the following sequence: Q < P, R < P, T < S, S < Q.Now the sequence becomes (i) T < S < Q < R < P(ii) T < S < R < Q < PIn both the sequences, we can observe that P is the tallest.
- 22. (1) Destination

Required distance = 5 m.

25. (2)
51. (4) Let the time taken by 3 men = x days Time taken by 9 women = x + 5 days 3m = x day

> $2 m = \frac{3x}{2} \text{ days}$ Similarly, 9w = x + 5 days3w = 3(x + 5) daysATQ,

$$\frac{2}{3x} + \frac{1}{3(x+5)} = \frac{1}{6} \Rightarrow \frac{2x+10+x}{3x(x+5)} = \frac{1}{6}$$
$$\Rightarrow 18x + 60 = 3x^2 + 15x \Rightarrow 3x^2 - 3x - 60 = 0$$
$$\Rightarrow x^2 - x - 20 = 0 \Rightarrow x = 5$$
Time taken by 1 man = 3x = 3 × 5 = 15 days
Time taken by 1 women = 9(x + 5) = 90 days
Required output = 6 times

(3)

Expenditure on food = $\frac{20}{100} \times 800 = Rs.160$

Expenditure on clothes = $\frac{40}{100} \times 800 = Rs.320$

- Money deposited in bank = $\frac{60}{100} \times 500 = Rs.300$
- .:. Required percentage

$$=\frac{320}{300}\times100=\frac{320}{3}=106\frac{2}{3}\%$$

53. (1) The given expression

54.

$$=\frac{\frac{1}{3}\times3\times\frac{1}{3}}{\frac{1}{3}\div\left(\frac{1}{3}\times\frac{1}{3}\right)}-\frac{1}{9}=\frac{\frac{1}{3}}{\frac{1}{3}\div\frac{1}{9}}-\frac{1}{9}=\frac{\frac{1}{3}}{\frac{1}{3}\times9}-\frac{1}{9}$$
$$=\frac{\frac{1}{3}}{\frac{3}{3}}-\frac{1}{9}=\frac{1}{9}-\frac{1}{9}=0$$
(2) SI = `(7200 - 6000) = `1200

$$\therefore SI = \frac{P \times R \times T}{100} \Longrightarrow 1200 = \frac{6000 \times R \times 4}{100}$$

PACE

Grand Test : CHSL-CHT1 : 180343

$$\Rightarrow R = \frac{1200 \times 100}{6000 \times 4} = 5\%$$
New rate of $R = 5 \times 1.5 = 7.5\%$
Then, $SI = \frac{6000 \times 7.5 \times 5}{100} = -2250$
Acanom $= (6000 + 2250) = -8250$
Side of triangle $= \frac{\sqrt{3}}{4} \times \left(\frac{2\sqrt{\pi}A}{3}\right)^3 = \frac{\pi\sqrt{3}A}{9} \text{ cm}^2$
Area of triangle $= \frac{\sqrt{3}}{4} \times \left(\frac{2\sqrt{\pi}A}{3}\right)^3 = \frac{\pi\sqrt{3}A}{9} \text{ cm}^2$
Side of triangle $= \frac{\sqrt{3}}{4} \times \left(\frac{2\sqrt{\pi}A}{3}\right)^3 = \frac{\pi\sqrt{3}A}{9} \text{ cm}^2$
Side of triangle $= \frac{\sqrt{3}}{4} \times \left(\frac{2\sqrt{\pi}A}{3}\right)^3 = \frac{\pi\sqrt{3}A}{9} \text{ cm}^2$
Side of triangle $= \frac{\sqrt{3}}{4} \times \left(\frac{2\sqrt{\pi}A}{3}\right)^3 = \frac{\pi\sqrt{3}A}{9} \text{ cm}^2$
Side of triangle $= \frac{\sqrt{3}}{4} \times \left(\frac{2\sqrt{\pi}A}{3}\right)^3 = \frac{\pi\sqrt{3}A}{9} \text{ cm}^2$
Side of triangle $= \frac{\sqrt{3}}{4} \times \left(\frac{2\sqrt{\pi}A}{3}\right)^3 = \frac{\pi\sqrt{3}A}{9} \text{ cm}^2$
Side of triangle $= \frac{\sqrt{3}}{4} \times \left(\frac{2\sqrt{\pi}A}{3}\right)^3 = \frac{\pi\sqrt{3}A}{9} \text{ cm}^2$
Side of triangle $= \frac{\sqrt{3}}{4} \times \left(\frac{2\sqrt{\pi}A}{3}\right)^3 = \frac{\pi\sqrt{3}A}{9} \text{ cm}^2$
Side of triangle $= \frac{\sqrt{3}}{4} \times \left(\frac{2\sqrt{\pi}A}{3}\right)^3 = \frac{\pi\sqrt{3}A}{9} \text{ cm}^2$
Side of triangle $= \frac{\sqrt{3}}{4} \times \left(\frac{2\sqrt{\pi}A}{3}\right)^3 = \frac{\pi\sqrt{3}A}{9} \text{ cm}^2$
Side of triangle $= \frac{\sqrt{3}}{4} \times \left(\frac{2\sqrt{\pi}A}{3}\right)^3 = \frac{\pi\sqrt{3}A}{9} \text{ cm}^2$
Side of triangle $= \frac{\sqrt{3}}{4} \times \left(\frac{2\sqrt{\pi}A}{4}\right)^3 = \frac{\pi\sqrt{3}A}{9} \text{ cm}^2$
Side of triangle $= \frac{\sqrt{3}}{4} \times \left(\frac{2\sqrt{\pi}A}{4}\right)^3 = \frac{\pi\sqrt{3}A}{12} \text{ cm}^2$
Side of triangle $= \frac{\sqrt{3}}{4} \times \left(\frac{2\sqrt{\pi}A}{4}\right)^3 = \frac{\pi\sqrt{3}A}{4} \text{ cm}^2$
Side of triangle $= \frac{\sqrt{3}}{4} \times \left(\frac{2\sqrt{\pi}A}{4}\right)^3 = \frac{\pi\sqrt{3}A}{4} \text{ cm}^2$
Side of triangle $= \frac{\sqrt{3}}{4} \times \left(\frac{2\sqrt{\pi}A}{4}\right)^3 = \frac{\pi\sqrt{3}A}{4} \text{ cm}^2$
Side of triangle $= \frac{\sqrt{3}}{4} \times \left(\frac{2\sqrt{\pi}A}{4}\right)^3 = \frac{\pi\sqrt{3}A}{4} \text{ cm}^2$
Side of triangle $= \frac{\sqrt{3}}{4} \times \left(\frac{2\sqrt{\pi}A}{4}\right)^3 = \frac{\pi\sqrt{3}A}{4} \text{ cm}^2$
Side of triangle $= \frac{\sqrt{3}}{4} \times \left(\frac{2\sqrt{\pi}A}{4}\right)^3 = \frac{\pi\sqrt{3}A}{4} \text{ cm}^2$
Side of triangle $= \frac{\sqrt{3}}{4} \times \left(\frac{2\sqrt{\pi}A}{4}\right)^3 = \frac{\pi\sqrt{3}A}{4} \text{ cm}^2$
Side of triangle $= \frac{\sqrt{3}}{4} \times \left(\frac{2\sqrt{\pi}A}{4}\right)^3 = \frac{\pi\sqrt{3}A}{4} \text{ cm}^2$
Side of triangle $= \frac{\sqrt{3}}{4} \times \left(\frac{2\sqrt{\pi}A}{4}\right)^3 = \frac{\pi\sqrt{3}A}{4} \text{ cm}^2$
Side of triangle $= \frac{\sqrt{3}}{4} \times \left(\frac{2\sqrt{\pi}A}{4}\right)^3 = \frac{\pi\sqrt{3}}{4} \text{ cm}^2$
Side of triangle $= \frac{\sqrt{3}}{4} \times \left(\frac{2\sqrt{\pi}A}{4}\right)^$

3

 $\Rightarrow P-4+\frac{4}{P}=32$

 $\Rightarrow P + \frac{4}{P} = 36$

65. (1) In 400 gm of alloy.

$$Zinc = \frac{5}{8} \times 400 = 250 \text{ gm}$$

$$Copper = \frac{3}{8} \times 400 = 150 \text{ gm}$$

$$x \text{ gm of copper be mixed, then}$$

$$\frac{250}{150 + x} = \frac{5}{4} \Rightarrow 750 + 5x = 1000$$

$$\Rightarrow 5x = 1000 - 750 = 250 \Rightarrow x = 50 \text{ gm}$$
66. (3) Let $a = b = c = 2$, then $2s = 6 \Rightarrow s = 3$
 $\therefore (s - a)^3 + (s - b)^3 + 3(s - a) (s - b)c$

$$= (3 - 2)^3 + (3 - 2)^3 + 3(3 - 2) (3 - 2) \times 2$$

$$= 1 + 1 + 3 \times 2 = 8 = c^3$$
67. (4) Length of the floor = 15 m 17 cm = 1517 cm
Breadth of the floor = 1517 \times 902 cm²
The number of square tiles will be least, when the size
of each tile is maximum.
 \therefore Size of each tile = HCF of 1517 and 902 = 41
 \therefore Required number of tiles $= \frac{1517 \times 902}{41 \times 41} = 814$
68. (2) $x = a\cos\theta$, $y = b\sin\theta$
 $\therefore b^2 x^2 + a^2 y^2 = b^2 a^2 \cos^2 \theta + a^2 b^2 \sin^2 \theta$
 $= a^2 b^2(\cos^2 \theta + \sin^2 \theta) = a^2 b^2 \times 1 = a^2 b^2$.
69. (4) Given $\frac{P^2 - 4P + 4}{4P} = 8$
 $= \frac{P^2 - 4P + 4}{P} = 32$

(1)
$$\therefore x = \frac{1}{y}$$

 $\therefore x + \frac{1}{x} = 4$
ATQ,

$$\frac{x^2 + y^2}{x^3 + y^3} = \frac{x^2 + \frac{1}{x^2}}{x^3 + \frac{1}{x^3}} = \frac{14}{52} = \frac{7}{26}$$

(1) Required expenditure
=
$$25000 \times \frac{(20+30)}{100} = Rs.12500.$$

Required total expenditure 15000 =

$$=\frac{15000}{(10+20)}\times 100 = Rs.50000.$$

From option (4),

$$\frac{360^{\circ}}{100} \times (30 - 15) = \frac{360^{\circ}}{100} \times 15 = 54^{\circ}.$$

Required percentage

$$=\frac{(15-10)}{15}\times100=\frac{5}{15}\times100=33.33\%.$$

$$\frac{60^{\circ}}{100} \times (20+5) = \frac{360^{\circ}}{100} \times 25 = 90^{\circ}.$$